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The aim of this work is to investigate the fully nonlinear dynamics of mixed convection
in porous media heated non-uniformly from below and through which an axial flow
is maintained. Depending on the choice of the imposed inhomogeneous temperature
profile, two cases prove to be of interest: the base flow displays an absolute instability
region either detached from the inlet or attached to it. Results from a combined direct
numerical simulations and linear stability approach have revealed that in the first
case, the nonlinear solution is a steep nonlinear global mode, with a sharp stationary
front located at a marginally absolutely unstable station. In the second configuration,
the scaling laws for the establishment of a nonlinear global mode quenched by the
inlet are found to agree perfectly with the theory. It is also found that in both
configurations, the global frequency of synchronized oscillations corresponds to the
local absolute frequency determined by linear criterion, even far from the threshold
of global instability.

1. Introduction
During the last few decades significant advances have been made in the theory

of nonlinear global modes dealing with spatially developing flows (for a recent
review see Chomaz 2005). The method of reducing complicated problems into simple
models retaining only the most essential features turns out to be very successful.
Specifically, in a semi-infinite medium x > 0, Couairon & Chomaz (1999) studied the
nonlinear solutions of the supercritical Landau–Ginzburg amplitude equation, with
spatially varying coefficients and with the condition of vanishing amplitude at the
inlet. They showed that the solutions called nonlinear global modes are associated
with a pulled front selected by a linear criterion. The selected frequency near the
onset of global instability is found to correspond to the absolute frequency at the
inlet of the medium. They also derived scaling laws of the amplitude of nonlinear
global modes and for the position of its maximum. In connection with real open-
flow systems, the derived scaling laws have been shown to agree well with the
experimental observations of Goujon-Durand, Jenffer & Wesfreid (1994) and with
the numerical simulations of Zielinska & Wesfreid (1995) of the wake behind
bluff bodies. As for the infinite domain, Pier, Huerre & Chomaz (2001) analysed
the properties of fully nonlinear self-sustained global modes in the framework of
supercritical complex Landau–Ginzburg amplitude equations with slowly spatially
varying coefficients. When the base flow displays a finite pocket of absolute instability
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within the medium, steep global modes were identified and are characterized by
a sharp stationary front located at the upstream boundary of absolute instability
which imposes its local absolute frequency on the entire medium. The analytical
structure underlying the spatial distribution of steep global modes has been analysed
in a consistent manner by using a matched asymptotic expansion method (Pier et al.
2001). The derived selection principle of the self-sustained synchronized oscillations of
steep global modes has been confirmed by direct simulations of real physical systems
such as two-dimensional wakes (Pier & Huerre 2001), separated boundary-layer flow
over a double-bump geometry (Marquillie & Ehrenstein 2003) and hot jets (Lesshafft
et al. 2006).

The objective of the present investigation is to study the interplay between
localization, advection, instability and nonlinearity for natural convection forced by a
horizontal pressure gradient in porous media, a problem generally termed the mixed
convection problem. Our first motivation is to compare our findings stemming from
the combined direct numerical simulations and linear stability approach to the theory
of global modes in both semi-infinite and infinite domains. The second motivation
follows from experimental studies of natural convection in porous media conducted
by Shattuck et al. (1997) and Howle, Behringer & Georgiadis (1997). In general, it is
found that the structure of the porous medium plays a role which is not predicted
by theories which assume a homogeneous system. Stable localized patterns were
observed in regions with locally larger permeability, and hence larger local filtration
Rayleigh number. By analogy, larger local filtration Rayleigh number is conceived
here by imposing an inhomogeneous temperature profile on the bottom plate. In the
case of homogeneous heating, the linear analysis presented by Delache, Ouarzazi &
Combarnous (2007) allowed discrimination between the convective and absolute
nature of the instability of the basic flow. In relation to experiments conducted by
Combarnous & Bories (1975), Delache et al. (2007) found that the border between
the convective and the absolute instability in the filtration Rayleigh–Péclet number
plane corresponds perfectly to the experimentally observed transition to oscillatory
transversal rolls.

The outline of the study is as follows. The equations governing the problem
together with the steady state and its linear stability are presented in § 2. After a
short description of the numerical method, the nonlinear global modes are computed
by direct numerical simulations of the coupled Darcy’s and energy equations. The
corresponding properties are presented and compared to the theory of nonlinear
global modes in the case of infinite media in § 3.1 and for semi-infinite media in § 3.2.
The main results of the study are summarized in § 4.

2. Problem formulation, steady-state and linear theory
We consider an isotropic and homogeneous porous layer of rectangular cross-

section with thickness H and width aH when the temperature of the bottom wall
exceeds that of the upper boundary and is modulated on a length scale L � H . We
denote the ratio H/L by ε and assume that ε � 1. The lateral boundaries are assumed
impermeable and perfectly heat insulating. Furthermore, we consider that a through-
flow is driven by a pressure gradient in the x-direction. We choose H , H 2(ρc)/kstg

, kstg/(H (ρc)f ) and kstgµ/(K(ρc)f ) as references for length, time, filtration velocity
and pressure. Here, kstg , (ρc), (ρc)f , K and µ are, respectively, the effective stagnant
thermal conductivity, the overall heat capacity of the porous medium per unit volume,
the heat capacity per unit volume of the fluid alone, the permeability of the medium



Nonlinear global modes in porous media 369

and the viscosity of the fluid. The temperature T ∗ is made dimensionless by writing
T ∗ = T ∗

1 + (�T )T , where T ∗
1 is the temperature of the upper boundary and �T is the

maximum temperature difference between the boundaries. Darcy’s law is used and
the Boussinesq approximation is employed. Under these conditions the dimensionless
equations governing the flow are:

∇ · V = 0, (2.1)

V + ∇P − RaT ez = 0, (2.2)

∂tT + V · ∇T − ∇2T = 0, (2.3)

with boundary conditions:

V · ez = 0 at z = 0, 1; V · ey = 0 at y = 0, a, (2.4)

T (z = 0) = 1 − F (X = εx) � 1; T (z = 1) = 0; ∂T /∂y = 0 at y = 0, a, (2.5)

with an imposed through-flow:

∫ 1

0

V · ex dz = Pe. (2.6)

The system is characterized by the following dimensionless parameters: the filtration
Rayleigh number Ra = KgαH�T (ρc)f /kstgν, the Péclet number Pe= UH (ρc)f /kstg ,
the lateral aspect ratio a and the small parameter ε.

U , g , ν, α and C are, respectively, the average filtration velocity imposed at the
entrance of the channel, the acceleration due to gravity, the kinematic viscosity and
the volumetric coefficient of thermal expansion.

Our aim is first to find an approximation to the steady-state solution, then to
examine its spatio-temporal linear stability and finally to perform direct numerical
two-dimensional simulations to characterize some properties of the nonlinear solution.
We search for a steady-state solution with (u, v, w, T , P )= (uB, 0, wB, TB, PB) of
(2.1)–(2.3) with boundary conditions (2.4)–(2.6). After some, not altogether trivial,
work we find a consistent expansion in the form:

TB = (1 − z)(1 − F ) + ε Pe

(
z

3
− z2

2
+

z3

6

)
∂XF + o(ε), (2.7)

uB = Pe − ε Ra

(
1

3
− z +

z2

2

)
∂XF + o(ε), (2.8)

wB = ε2Ra

(
z

3
− z2

2
+

z3

6

)
∂2

XF + o(ε2), (2.9)

PB = −Pe x + Ra

(
z − z2

2

)
+ Ra F (X)

(
1

3
− z +

z2

2

)
+ O(ε). (2.10)

Linearizing the system (2.1)–(2.3) around the basic solution (2.7)–(2.10) introduces
two horizontal length scales, and analytic solutions may be obtained in the framework
of the WKBJ approximation. The three-dimensional infinitesimal perturbations
verifying the boundary conditions are then expressed as
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⎛
⎜⎜⎜⎝

u

v

w

θ

p

⎞
⎟⎟⎟⎠ = exp

(
i

ε

∫
k(X)dX − iω0t

)
⎛
⎜⎜⎜⎝

u1(X) cos [πz] cos [(m/a)πy]
v1(X) cos [πz] sin [(m/a)πy]
w1(X) sin [πz] cos [(m/a)πy]
θ1(X) sin [πz] cos [(m/a)πy]
p1(X) cos [πz] cos [(m/a)πy]

⎞
⎟⎟⎟⎠ + c.c., (2.11)

where ω0 and k are the complex frequency and the longitudinal wavenumber,
respectively, mπ/a being the real wavenumber in the spanwise direction.

If we substitute (2.11) into the equations of motion (2.1)–(2.3), linearized around the
base flow, we obtain at leading order an algebraic system with a non-trivial solution
only if the problem is singular, which implies an explicit dispersion relation:

D(ω0, k, X, m, a, Ra, Pe) =
(
k2 + π2(1 + m2/a2)

)
(−iω0 + ikPe + k2 + π2(1 + m2/a2)) − (k2 + π2m2/a2)Ra(1 − F (X)) = 0. (2.12)

We emphasize that our main objective is to compare the local absolute frequencies
to the global frequencies computed by direct numerical simulations. Therefore we are
not interested in the present study by the analytical construction of the linear global
mode, i.e. by the determination of the five functions of X in (2.11). This analytical
construction is mathematically similar to that performed by Monkewitz, Huerre &
Chamaz (1993) and Ouarzazi, Bois & Taki (1996) and is postponed to a subsequent
paper. Here, we briefly recall that in the unstable case, if ∂kω0 = 0, a perturbation at
fixed x grows with a rate ω0,i(k). When ω0,i(k) is positive, the system is said to be
absolutely unstable and localized perturbations grow in situ and also expand in space.
On the other hand, if ω0,i(k) is negative, the system is said to be convectively unstable,
meaning that any localized impulse is convected away so that instabilities cannot
globally grow. In order to investigate the roll orientation corresponding to the highest
local absolute growth rate ω0,i(k, X, m), we solve the following system by means of a
Newton–Raphson algorithm : D(ω0, k, X, m, a, Ra, Pe) = 0 and dω0/dk = 0.

The dependence on Ra and Pe of ω0,i(k, X, m) is determined for different m.
We found that the mode m = 0 corresponding to oscillatory pure transverse rolls is
the most amplified mode in the absolutely unstable parameter range studied. We
have checked that this pattern selection related to the highest local absolute growth
rate remains pertinent for any lateral aspect ratio a. In the limit of infinite a,
this pattern selection has been shown to also hold in the Poiseuille–Rayleigh-Bénard
problem (Carrière & Monkewitz 1999). We therefore restrict, in the remainder of
this paper, the investigation of linear and nonlinear properties to transverse rolls.
We wish to make it clear that the present two-dimensional investigation is justified
if it is assumed that the temperature of the bottom wall is only inhomogeneous
in the x-direction and the sidewalls are perfectly heat insulating. In more realistic
configurations with inhomogeneities also acting in the y-direction and where the
sidewalls are not thermally insulated, the dynamics is complicated and three-
dimensional instabilities other than pure transverse rolls may be the most amplified.
Depending on the choice of the imposed inhomogeneous temperature profile, two
generic configurations are considered. The first configuration, adapted to infinite
media, is built such that the streamwise development of ω0,i(k, X, m = 0) presents
a local maximum within the medium and decays upstream and downstream. In
contrast, the second configuration adequate to semi-infinite media is conceived to
allow ω0,i(k, X, m =0) to decrease continuously from the entrance cross-section of the
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channel. The streamwise dependence of the frequency ω0,r (X) is displayed in figure 1(a)
for Pe=6 and Ra =60 in the case of infinite media. The shape of the inhomogeneous
temperature imposed at the lower boundary, namely T (z = 0) = 1 − tanh2(X), allows
the base flow to display a region of absolute instability extending from the location
xca to the spatial position xac. Below xca (beyond xac), the flow is convectively unstable
until the station xsc (xcs), where a transition to a stable region occurs. Corresponding
variations of local frequencies for semi-infinite media are shown in figure 1(b) for
Pe= 5 and Ra = 52. The local absolute instability of the base flow extending from the
inlet to xac is generated by the choice T (z = 0) = 1 − tanh(X). Beyond xac, the flow is
convectively unstable until xcs , where a transition to a stable region occurs.

According to the theory of nonlinear global modes (Chomaz 2005), an interesting
issue related to the global frequency selection criterion is the evolution of both the
marginal absolute frequency ωca

0 = ω0,r (x = xca) in the case of infinite media and the
absolute frequency ω0,r (x = 0) at the inlet of semi-infinite media. The marginal absolute
frequency is sketched in figure 1(c) for Pe= 6 with variable Ra and in figure 1(e)
for variable Pe and Ra = 65. Similarly, the variations of ω0,r (x = 0) as functions of Ra
and Pe are shown in figures 1(d) and 1(f ), respectively.

The purpose of the following section is to perform direct numerical two-dimensional
simulations of the problem, the results of which will be compared to linear theory.

3. Nonlinear global modes and comparison with linear theory
The two-dimensional mixed convection problem in porous medium, (2.1)–(2.3), is

numerically solved using a pseudospectral method in space: the unknown fields, V ,
P and T , are expanded in Chebyshev polynomials in both x- and z-directions. The
energy equation (2.3) is discretized by a scheme of second-order temporal accuracy,
with an implicit Euler scheme on the diffusion term, and an explicit Adams–Bashforth
scheme for the convective contribution. The code used is an extension of a code
designed for solving the Navier–Stokes equations for fluids flowing in closed cavities.
Its specificity relies on an efficient two-dimensional/three-dimensional Stokes solver
shown by Leriche & Labrosse (2000) as being consistent with the continuous
problem. This code has been used with many different physical configurations, for
instance for the Stokes eigenmodes dynamics (Leriche & Labrosse 2007). The first
step of this Stokes solver is a Darcy solver supplying an exact divergence-free velocity
field. The code was adapted with (i) a by-pass of the Stokes solver second step, (ii) the
treatment of an open flow configuration and (iii) the addition of the energy equation.
The computational domains are either [−L, L] for the case of a pocket of absolute
instability within the medium, or [0, L] if the base flow is absolutely unstable at the
inlet. In order to avoid outflow effects, the computational domains are chosen so that
the base flow is always stable in a finite region near the outlet. To simulate the axial
flow through the porous sidewalls in the x-direction, a uniform horizontal velocity
profile is assumed and the conductive temperature profile (1 − z)(1 − F ) is imposed.
The initial conditions for the velocity and the temperature are taken to be the basic
state approximated by (2.7)–(2.9) plus a perturbation. The numerical solution supplies
the total field, from which the perturbation field is extracted by removing the basic
state. As a validation test, the results of Dufour & Néel (1998) for the homogeneous
heating case have been successfully reproduced.

3.1. Results for nonlinear global mode with a pocket of absolute instability

The first simulation is carried out with Ra = 60, Pe=6 and ε =0.01. Figure 2(a)
illustrates the obtained nonlinear global mode solution in the asymptotic state,
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Figure 1. Comparison of the numerically observed global frequency ωg (dashed or dotted)
with results obtained from linear theory (solid) for infinite (a, c, e) and semi-infinite (b, d, f)
domains. Local absolute frequency as a function of streamwise coordinate x for (a) Pe= 6
and Ra=60 and (b) Pe= 5 and Ra= 52. Marginal absolute frequency ωca

0 for (c) Pe= 6 and
varying Ra and (e) varying Pe and Ra= 65. Absolute frequency at the inlet for (d) Pe= 5 and
varying Ra and Ra= 52 and varying Pe.

characterized by a sharp front located at the upstream boundary xca of the absolute
unstable region. This spatial structure points to the need to ascertain that the observed
nonlinear global mode is a steep one according to principles proposed by Pier
et al. (2001). This task will be accomplished through a series of suitable numerical
experiments to test the following features of steep nonlinear global modes: (i) that the
global frequency is simply determined by ωca

0 obtained by linear dispersion equation;
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Figure 2. (a) Nonlinear global mode shape for infinite domain; the perturbation of the
vertical velocity component in the middle of the porous medium is presented as a
function of the downstream distance for Pe= 6, Ra= 60 and ε = 0.01. (b) Semi-algorithmic
plot of the upstream front; comparison of the front slope with spatial growth rates
−k−

i (ωca
0 , x = − 55) = 1.99, −kca

0,i =1.3 and −k+
i (ωca

0 , x = − 55) = 0.6. (d) Semi-algorithmic
plot of the decaying nonlinear wavetrain beyond xcs; comparison of its slope with
−k+

i (ωca
0 , x = 82) = − 0.51 and −k−

i (ωca
0 , x = 82) =3. (c) The instability balloon is presented

(grey region) together with the linear spatial branches kl+
r (solid curve) and kl−

r (dashed curve)
computed with ω0 = ωca

0 . Pinching occurs for the absolute wavenumber kca
0 at x = xca and

x = xac . The dots in (c) represent local wavenumbers computed numerically.

(ii) that upstream of xca , the front displays the same slope as a k− wave and that
downstream of xcs the nonlinear global mode decays as a k+ wave; (iii) that the
real wavenumber in the central region of the nonlinear global mode is connected
downstream of xcs to the real wavenumber of a k+ wave.

Concerning the frequency selection process, figure 1(a) shows that for Ra = 60 and
Pe= 6, the numerically computed global frequency is ωg = 20.52 to be compared
with the theoretical value ωca

0 = 20.355. Moreover, numerical results displayed in
figures 1(c) and 1(e) confirm that the global frequency criterion is still valid for
varying Ra and Pe numbers. Next, we will examine the complete spatial structure
of the nonlinear global mode. Specifically, we focus on the correlation of spatial
branches determined by local stability analysis with both the observed sharp upstream
front located in the vicinity of xca and the decaying nonlinear wavetrain beyond
the spatial position xcs (figure 2a). The spatial structure of the upstream front is
illustrated in the semi-algorithmic diagram of figure 2(b). The linear spatial growth
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rates −k−
i (ωca

0 ) and −k+
i (ωca

0 ) evaluated at x = − 55, a spatial position corresponding
to a local convective instability in the upstream tail, are also shown in figure 2(b).
We would like to point out that in the convectively unstable parameters, the complex
spatial branches k+ and k− are associated with instability waves propagating in the
downstream and upstream direction, respectively. Figure 2(b) clearly demonstrates
that the slope of the global mode envelope is ruled by −k−

i (ωca
0 ) in the upstream

convectively unstable region. Moreover, in the semi-logarithmic diagram of figure 2(d),
the decaying nonlinear wavetrain beyond xcs is seen to be ruled by the k+ spatial
growth rate. Therefore, we conclude that the spatial position xca plays a key role
in generating global self-sustained oscillations independently of the presence of any
persistent forcing of an initial perturbation. We now examine the connection between
the numerically computed real wavenumbers and linear theory. Let us first recall that
a region of instability is characterized by perturbations which amplify in time, starting
from an initial spatially periodic perturbation, i.e. we assume that the perturbation
wavenumber k is real while its frequency ω is complex. A positive temporal growth
rate allows us to define an instability balloon in the (x, k)-plane (grey domain of
figure 2(c) bounded by a contour where ωi = 0. In our numerical simulations, we
found a unique wavelength selection in the central region of the instability balloon.
It depends only on the final Pe − Ra combination. For Ra = 60 and Pe= 6, the dots
in figure 2(c) indicate local wavenumbers obtained numerically by considering an
average of local distances between eight adjacent rolls of the global mode (figure
2a). We also display in this figure the linear spatial branches kl+

r (solid curve) and
kl−

r (dashed curve) computed with ω0 = ωca
0 in the complex k-plane. We observe from

the (x, k)-plane of figure 2(c) that the nonlinear travelling waves exhibit a spatially
uniform wavelength downstream of xca until the boundary xcs of the instability
balloon. At the neutrally stable location xcs , the linear spatial branch kl+

r takes over
in the downstream linear region x >xcs .

3.2. Results in the case of an absolute instability region attached to the inlet

This section aims at characterizing the properties of nonlinear global modes of mixed
convection flows displaying a sufficiently extended region of absolute instability near
the inlet of the porous cavity. For a set of parameters fixed in the fully nonlinear
regime, direct numerical simulations demonstrate that, after transients, the solution
is composed with a front connecting the conductive state at the inlet to synchronized
oscillatory patterns downstream. In order to exemplify some properties of the observed
nonlinear global mode, we present results of numerical resolutions corresponding to
Ra = 52 and Pe= 5. Figure 3(a) illustrates the spatial structure of the nonlinear global
mode which extends downstream beyond the neutrally stable station xcs . This figure
also shows that the maximum of the amplitude is located in the absolutely unstable
region at a distance xs from the inlet. In this regard, it is useful to recall the theoretical
results obtained by Couairon & Chomaz (1999) within the Landau–Ginzburg model.
These authors concentrate on scaling properties and frequency selection criterion
relevant to unstable spatially developing flows in a semi-infinite domain. In particular,
their model predicts that (i) the global mode frequency corresponds to the absolute
frequency at the inlet in the limit of marginal global instability; (ii) the scaling law
which links the characteristic length xs to the departure from the threshold RaA

of absolute instability is xs ≈ (Ra − RaA)−1/2; (iii) the maximum As of the global
mode amplitude follows the law As ≈ (Ra(xs) − Rac)

+1/2, where Ra(xs) and Rac are,
respectively, the local Rayleigh number evaluated at x = xs and its value at the onset
of convective instability. These theoretical predictions based on model equations are
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Figure 3. (a) Nonlinear global mode shape; the perturbation of the vertical velocity
component in the middle of the semi-infinite porous medium is presented as a function
of the downstream distance for Pe= 5 and Ra= 52. (b) Distance xs from the inlet to the
spatial position where the maximum of the nonlinear global mode occurs obtained by
direct numerical simulations (dotted) for Pe= 5; this distance is fitted well by the expression
xs = 3.9π(Ra − RaA)−1/2 (solid). (c) The maximum As of the global mode amplitude obtained
numerically (dotted) which is fitted well by As = 2.3(Ra(xs) − Rac)

+1/2 (solid).

compared to the results stemming from direct numerical simulations of the current
problem. The frequency selection process is illustrated in figure 1(b) for Ra = 52 and
Pe= 5. This figure shows that ωg is nearly equal to ω0,r (x = 0). In addition, numerical
results displayed in figure 1(d) for varying Ra and Pe= 5 and in figure 1(f ) for
varying Pe and Ra = 52 confirm that this frequency selection criterion is still robust
far from the threshold of marginal global instability. This result is not consistent with
the theory of nonlinear global modes which allows for a linear departure between the
global frequency and the absolute frequency at the inlet after the absolute instability
threshold which, as for a wake (Chomaz 2003), is absent (figure 1d).

Finally, numerical runs show that the global mode steepens at the inlet as Ra
increases beyond RaA. For Pe= 5, we find that the position xs and the maximum As

of the global mode amplitude are fitted well by the expressions xs = 3.9π(Ra−RaA)−1/2

(figure 3b) and As =2.3(Ra(xs) − Rac)
+1/2 (figure 3c), respectively, in agreement with

the scaling laws derived in Couairon & Chomaz (1999).

4. Conclusions
A study combining linear spatio-temporal analysis and direct numerical simulations

has been carried out here to explore the fully nonlinear solutions of mixed convection
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flows in porous media non-uniformly heated from below and subjected to a horizontal
pressure gradient. The shape of the prescribed temperature at the bottom boundary is
assumed to vary slowly in the through-flow direction. The result is the establishment
of a weakly inhomogeneous basic state, the stability of which is carried out using
the WKBJ approximation. Regions of local absolute instability are identified and the
frequency of oscillating solutions is determined as a function of downstream position
for two generic cases: the base flow displays a pocket of absolute instability bordered
by two convective instability regions or the base flow promotes a finite region of
absolute instability near the inlet of the medium. For both configurations, direct
numerical simulations of the two-dimensional problem indicate that the presence of
a region of absolute instability gives rise to nonlinear global modes in the form of
self-sustained oscillations with well-defined frequency. It is found that the numerically
computed frequency corresponds to the marginal absolute frequency in the case of a
pocket of absolute instability and to the absolute frequency at the inlet if the base
flow is absolutely unstable at the inlet. A close inspection of the spatial structure
underlying these nonlinear global modes shows the following.

(i) In the case of a pocket of absolute instability, a nonlinear global mode is
composed both by a sharp front located at the upstream boundary of absolute
instability which decays upstream as a k− wave and by a nonlinear wavetrain beyond
the downstream convective/stable transition station which decays as a k+ wave. This
spatial structure corresponds to the steep global mode scenario described by Pier
et al. (2001) and ascertains that the upstream station of marginal absolute instability
acts as a generator of self-sustained oscillations.

(ii) In the case of an absolutely unstable region attached to the inlet, the scaling
laws for the maximum of the global modes amplitude and for its spatial location agree
perfectly with the predictions from model analyses in semi-infinite media (Couairon &
Chomaz 1999).

We argue that mixed convection in porous media is a good candidate to
describe global instabilities in open-flow systems. Therefore, we hope that the
present theoretical contribution will stimulate much needed and desirable laboratory
experiments with non-invasive techniques similar to those used by Shattuck et al.
(1997) and Howle et al. (1997) in their work dealing with natural convection in
porous media.
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